如何出产氮气?液氮低温精馏办法简介

时间:2020-06-19 09:39来源: 作者:ydgmve2020yyx 点击:
出产氮气及液氮的低温精馏办法,一般触及进料空气的低温精馏,更具体地说,触及进料空气低温精馏出产氮的办法。一种低温精馏的方法,其中氮气和液氮二者均可采用一个或多个塔
出产氮气及液氮的低温精馏办法,一般触及进料空气的低温精馏,更具体地说,触及进料空气低温精馏出产氮的办法。一种低温精馏的方法,其中氮气和液氮二者均可采用一个或多个塔通过空气有效加以生产,其中驱动低温分离的致冷作用是通过一种多组分致冷剂流体的致冷回路,优选为闭合回路来提供的。(此文转载于网络,内容仅供参考)液氮罐

进料空气的低温精馏出产氮气,一般使用一种或多种工艺物流如部分进料空气的气轮胀大,提供驱动别离所需的致冷。这种气轮胀大体系有效,但耗能很大。液氮罐厂家小编了解到一般出产氮气时还期望出产液氮。这样的体系就迫使整个低温空气别离工厂担负很高的致冷负荷,由于相当很多的致冷要随液氮带出工厂。

因此本发明意图在于提供一种低温空气别离出产氮气和液氮这两种产品的办法,能够做到消耗能量比已知办法所需用的更少。

本范畴技能人员在阅读本披露之后将会理解,以上和其它意图经过本发明均可到达,其一方面为一种经过进料空气低温精馏出产氮气及液氮的办法包含

(A)、紧缩一种多组分致冷剂流体,冷却该已被紧缩的多组分致冷剂流体,胀大该已被冷却及紧缩的多组分致冷剂流体,并经过与所述进行冷却的已被紧缩的多组分致冷剂流体的直接热交换,来加热该胀大了的多组分致冷剂流体,并又与进料空气的直接热交换,来发生冷却后的进料空气;

(B)、将冷却后的进料空气输送至低温精馏塔中,经过在低温精馏塔内的低温精馏,将进料空气别离为富氮蒸气和富氧液体;

(C)、收回该富氮蒸气的榜*部分作为产品氮气;

(D)、冷凝第二部分的富氮蒸气,出产富氮液体;以及(E)、收回至少一部分富氮液体作为产品液氮。

QQ截图20191008184437

本发明的另一方面是一种经过进料空气的低温精馏出产氮气及液氮的办法包含

(A)、紧缩一种多组分致冷剂流体,冷却该已被紧缩的多组分致冷剂流体,胀大该已被冷却及紧缩的多组分致冷剂流体,并经过与所述进行冷却已被紧缩的多组分致冷剂流体的直接热交换,来加热该胀大了的多组分致冷剂流体,并又与进料空气的直接热交换,来发生冷却后的进料空气;

(B)、将冷却后的进料空气输送至榜*低温精馏塔中,并经过在榜*低温精馏塔内的低温精馏,将进料空气别离为富氮蒸气和富氧流体;

(C)、将富氧流体送至第二低温精馏塔中,在第二低温精馏塔内经过低温精馏将富氧流体别离为较富氮的流体和较富氧的流体;

(D)、收回至少一部分较富氮流体作为产品液氮;并(E)、收回至少富氮蒸气和较富氮的流体中的至少一种作为产品氮气。

这儿所用术语“塔”指的是一种蒸馏或分馏塔,或蒸馏或分馏区,即一种触摸塔或触摸区,其中液相及蒸气相进行逆流触摸,实现流体混合物的别离,例如可经过装在塔内一系列笔直间隔的塔盘或塔板上及/或诸如结构式或乱堆式的填料单元上来进行蒸气相与液相间的触摸。对蒸馏塔进一步的评论,可参考R.H.佩里及C.H.希尔顿合编的“化学工程师手册”,第五版,第13节“接连蒸馏办法”(迈克格偌-席尔图书公司(McGraw-HillBookCompany),纽约)。

蒸气液相触摸的别离进程取决于组分间的蒸气压差。高蒸气压(或高蒸发性或低沸点)的组分倾向于在蒸气相中浓缩,而低蒸气压(或低蒸发性或高沸点)的组分倾向于在液相中浓缩。蒸馏是一种可使用液体混合物的加热在蒸气相中浓缩较易蒸发组分,在液相中浓缩较难蒸发组分的别离进程。部分冷凝是使用蒸气混合物的冷却在蒸气相中浓缩易蒸发组分及在液相中浓缩难蒸发组分的办法的别离进程。

精馏,或接连蒸馏,是将接连部分汽化及冷凝结合一同的别离进程,如经过对蒸气相液相逆流处理所到达的那样。蒸气相与液相间的逆流触摸可所以*热的,或非*热的,并可包含相间积分(分段)或微分(接连)的触摸。使用精馏原理别离混合物的别离工艺设备一般可互相通称为精馏塔、蒸馏塔、或分馏塔。低温精馏是一种至少部分温度处于或低于150°K(*对)下进行的精馏进程。

这儿所用术语“直接热交换”指的是,使两流体无任何实体触摸或互相互不混合情况下所进行的热交换。

随收回相应液体氮量的增加,这个问题加重。而出产氮气和液氮二者的体系,能做到消耗能量比当今技能所需的更少,是*有期望的。

这里所用术语“膨胀”指实行压力降低。

这里所用术语“产品氮气”指氮浓度至少99%(摩尔)的气体。

这里所用术语“产品液氮”指氮浓度至少99%(摩尔)的液体。

这里所用术语“进料空气”指包括主要为氧及氮的一种混合物,诸如环境空气。

这里所用术语“上部”和“下部”分别指一个塔的中点以上和以下的塔段。

这里所用术语“可变负荷致冷剂”指的是一种多组分流体,即两种或多种组分其比例使这些组分的液相可在该混合物的泡点及露点间进行连续升温变化的混合物。混合物的泡点是,在给定压力下全部处于液相的混合物只要加热就招致形成与液相平衡的蒸气相的温度。混合物的露点温度指的是,在给定压力下全部处于蒸气相的混合物只要撤热就招致形成与蒸气相平衡的液相的温度。因此,在混合物泡点与露点间的温度区就是汽液两相平衡共存区。在实施本发明中,对于该多组分致冷剂流体的泡点与露点间的温差至少10°K,优选至少20°K,更优选至少50°K。

这里所用术语“碳氟化合物”指的是下述物质的一种四氟代甲烷(CF4)、全氟乙烷(C2F6)、全氟丙烷(C3F8)、全氟丁烷(C4F10)、全氟戊烷(C5F12)、全氟乙烯(C2F4)、全氟丙烯(C3F6)、全氟丁烯(C4F8)、全氟戊烯(C5F10)、己氟环丙烷(cyclo-C3F6)和辛氟环丁烷(cyclo-C4F8)。

这里所用术语“氟代烃”指的是下述物质的一种三氟甲烷(CHF3)、五氟乙烷(C2HF5)、四氟乙烷(C2H2F4)、庚氟丙烷(C3HF7)、己氟丙烷(C3H2F6)、戊氟丙烷(C3H3F5)、四氟丙烷(C3H4F4)、壬氟丁烷(C4HF9)、辛氟丁烷(C4H2F8)、十一氟戊烷(C5HF11)、氟代甲烷(CH3F)、二氟甲烷(CH2F2)、氟代乙烷(C2H5F)、二氟乙烷(C2H4F2)、三氟乙烷(C2H3F3)、二氟乙烯(C2H2F2)、三氟乙烯(C2HF3)、氟乙烯(C2H3F)、戊氟丙烯(C3HF5)、四氟丙烯(C3H2F4)、三氟丙烯(C3H3F3)、二氟丙烯(C3H4F2)、庚氟丁烯(C4HF7)、己氟丁烯(C4H2F6)和壬氟戊烯(C5HF9)。

这里所用术语“氟醚”指的是下述物质的一种三氟甲氧-全氟甲烷(CF3-O-CF3)、二氟甲氧-全氟甲烷(CHF2-O-CF3)、一氟甲氧-全氟甲烷(CH2F-O-CF3)、二氟甲氧-二氟甲烷(CHF2-O-CHF2)、二氟甲氧-全氟乙烷(CHF2-O-C2F5)、二氟甲氧-1,2,2,2-四氟乙烷(CHF2-O-C2HF4)、二氟甲氧-1,1,2,2-四氟乙烷(CHF2-O-C2HF4)、全氟乙氧-氟代甲烷(C2F5-O-CH2F)、全氟甲氧-1,1,2-三氟乙烷(CF3-O-C2H2F3)、全氟甲氧-1,2,2-三氟乙烷(CF3-O-C2H2F3)、环-1,1,2,2-四氟丙醚(cyclo-C3H2F4-O-)、环-1,1,3,3-四氟丙醚(cyclo-C3H2F4-O-)、全氟甲氧-1,1,2,2-四氟乙烷(CF3-O-C2HF4)、环-1,1,2,3,3-戊氟丙醚(cyclo-C3H2F5-O-)、全氟甲氧-全氟丙酮(CF3-O-CF2-O-CF3)、全氟甲氧-全氟乙烷(CF3-O-C2F5)、全氟甲氧-1,2,2,2-四氟乙烷(CF3-O-C2HF4)、全氟甲氧-2,2,2-三氟乙烷(CF3-O-C2H2F3)、环-全氟甲氧-全氟丙酮(cyclo-CF2-O-CF2-O-CF3-)和环-全氟丙醚(cyclo-C3F6-O)。

这里所用术语“大气气体”指的是下述物质氮(N2)、氩(Ar)、氪(Kr)、氙(Xe)、氖(Ne)、二氧化碳(CO2)、氧(O2)、一氧化碳、氢和氦(He)。

这里所用术语“无毒”指的是按照合格暴露极限处理时不造成严重或长期危害的中毒。

这里所用术语“难燃”指的是无闪点或闪点非常高,至少600°K。

这里所用术语“低臭氧消耗”指的是消耗臭氧的能力在0.15以下,如蒙特利尔普若托公约所规定,其中二氯氟甲烷(CCl2F2)的消耗臭氧能力为1.0。

这里所用术语“非臭氧消耗”指的是不含氯、溴或碘原子的组分。

这里所用术语“正常沸点”指的是在1个标准大气压下,即14.696磅/平方英寸(*对)下,的沸腾温度。

进料空气经返回产品流及废物流和由多组分致冷剂流体产生的致冷作用而被冷却。多组分致冷剂流体以206物流经循环压缩机220通路压缩至一般60-600psia为的压力范围,构成压缩后的多组分致冷剂流体201。该压缩后的多组分致冷剂流体经后冷器221通路冷却,撤出压缩热,并可能被部分冷凝。然后该压缩后的多组分致冷剂流体以202物流被输送穿过主热交换器1,进一步加以冷却,并至少部分被冷凝,和可能被全部冷凝。接着该冷却及压缩后的多组分致冷剂流体203通过伐204膨胀或节流。节流优选部分汽化该多组分致冷剂流体,冷却流体并产生致冷作用。对于某些受限制的情况,取决于热交换的条件,该压缩后流体203在膨胀之前可以是过冷液体,并可在初期膨胀后保持液态。而后,经热交换器中的加热,该流体会出现两相。流体穿过伐的压力膨胀借助焦耳汤姆孙效应而产生致冷作用,即由于在等焓条件下压力膨胀而降低流体的温度。但是,在某些情况下,由于膨胀功而可能使温度降低。

再将载冷的多组分两相流205通过主热交换器1,使之加热和*汽化,从而通过间接热交换而对冷流202起作用,并也可将致冷作用传递给热交换器内的几种工艺物流,包括进料空气流63,由此通过将多组分致冷剂流体致冷回路产生的致冷作用传送至低温精馏工厂中,维持分离过程。然后所得加热后的多组分致冷剂流体以蒸气流206被循环至压缩机220,再开始新的循环。在多组分致冷剂流体的致冷循环中,在高压混合物进行冷凝时,低压混合物也与其相反在沸腾,即冷凝热沸腾了低压液体。在每一温度水平下,汽化与冷凝间的净差产生致冷作用。对于给定的致冷组分的组合、混合物的组成、流率及压力水平决定每一温度水平上可提供的致冷作用。其中载冷的多组分流体对进料空气起冷却作用并不干扰热传递流体的优选实施方案。但要明白,多组分致冷剂流体可以冷却可接着用于冷却进料空气流的另一流体。

冷却后的进料空气分流为主要部分108,此部分被输送穿过低温精馏塔10,和次要部分,此部分经热交换器3通路至少被部分冷凝后以物流110进入塔10。

低温精馏塔10操作于一般30-200psia的压力范围。在低温精馏塔10内,进料空气经低温精馏被分离为富氮蒸气和富氧液体。富氮蒸气以物流69从精馏塔10上部引出,富氮蒸气的*部分91经热交换器3加热,所得物流93经主热交换器1加热形成产物流94,以回收作为产品氮气。图1说明该优选实施方案,其中物流94的氮气经压缩机33压缩,所得压缩氮气流106经后冷器34通路冷却移出压缩热,并作为升压的产品氮气以物流107加以回收,其压力一般在50-300psia范围。本发明的产品氮气纯度高达99.9%摩尔氮或更高。

富氮蒸气的第二部分70被输送通过*部冷凝器2,经冷凝形成富氮液体,以物流71从*部冷凝器2引出。至少部分富氮液体以物流98作为产品液氮加以回收。也可将富氮液体物流72输送进入塔10作为回流。本发明产品液氮纯度可高达99.9%摩尔氮或更高。

将富氧液体从精馏塔10下部以物流65引出,并送经热交换器3通路加以过冷。所得过冷富氧液体66再经阀67节流膨胀,然后以物流68输送进入*部冷凝器2,通过与富氮蒸气的间接热交换进行汽化,以实现前述富氮蒸气冷凝为富氮液体。将所得富氧蒸气从*部冷凝器2以物流102引出,经热交换器3的通路加热,将所得物流104进一步经主热交换器1通路加热,接着作为废物流105排出系统。虽然图1未加说明,但形成废物流的一部分富氧蒸气可用于再生净化器32。

本发明另一实施方案,其中将多组分致冷剂流体的致冷回路与该塔进行了组合。虽然操作该致冷回路一般需较多动力,但这种装置可改善氮的回收。图2中数字与图1中表示一般设备的数字相同,对这些一般设备将不再作详细描述。

将冷却后的进料空气流64直接送至塔10内。冷却后的多组分致冷剂流体203在膨胀前进一步被冷却。在图2说明的实施方案中,这种进一步冷却是通过与塔10底液,即富氧液体,在塔底再沸器7中的间接热交换进行的。该进一步冷却对物流203起进一步冷凝和一般*冷凝的作用。接着将液化后的多组分致冷剂流体以物流217从底部再沸器7送至伐220,使之膨胀或节流,产生致冷作用,然后以物流221送至*部冷凝器2进行汽化。将所得的多组分致冷剂流体由*部冷凝器2以物流218输送穿过热交换器3进行加热,将所得物流219输送至主热交换器1,进一步加热,实现对物流202及63的冷却,如前所述。

本发明的另一优选实施方案。图3中用于表示一般设备的数字与图1中的那些相同,对这些一般设备也不再作详细描述。在图3所述的实施方案中,对主热交换器用1a及1b标记的两部分来说明。

将富氧液体68输送穿过*部冷凝器2,进行部分汽化,然后作为两相流333送至相分离器313,分离为蒸气部分和液体部分。蒸气部分以物流336从该相分离器313引出,经压缩机360通路压缩,再以物流337送入塔10的下部。其余富氧液体的液流部分以物流339从相分离器313引出,经伐340节流,并以物流341通过*部冷凝器2,经与第二部分富氮蒸气的间接热交换进行汽化。将所得汽化后的富氧流体以物流302从*部冷凝器2送经热交换器3和主热交换器1b形成物流329,再经气轮膨胀器380进行气轮膨胀,产生致冷作用。将所得载冷的物流304通过主热交换器1a、1b通路加热,然后以物流305排出系统。

本发明采用两塔的另一优选实施方案,其中产品氮气可以在两个不同压力下加以回收。图4中用于表示一般设备的数字与图1中的那些相同,对这些一般设备也不再作详细描述。

将冷却后的进料空气流64直接送至*低温精馏塔110内,操作于一般100-200psia的压力范围内。如果需要,将富氮蒸气的部分85输送穿过主热交换器1,以物流86回收产品氮气。将整个富氮液体以物流71输送至塔110作为回流。在图3说明的实施方案中,输进*部冷凝器2的部分富氧液体是未被汽化的。

将来自*部冷凝器2的富氧蒸气以物流76输送穿过伐77,并以物流78输送进入第二低温精馏塔111。其余富氧液体以物流81从*部冷凝器引出,经热交换器或过冷器5加以过冷。将所得过冷的富氧液体以物流82输送穿过伐83,接着以物流84进入第二低温精馏塔111,第二低温精馏塔操作于压力低于*低温精馏塔110的条件下,一般在30-130psia的范围内。

在塔111内,通过低温精馏将供给该塔的富氧液体分离为较富氮流和较富氧流。较富氮流以气流188从塔上部引出,如果需要,可将191部分经热交换器5、3及1通路加热,并以物流194作为产品氮气加以回收。如果所需,物流194也可经压缩机133通路进行压缩,所得物流176在后冷器134中进行冷却,所得物流177作为产品氮气加以回收。将物流188的一部分或全部以物流90输送进入*部冷凝器6,进行冷凝,形成较富氮的液体,再以物流195从*部冷凝器抽出。将物流195的一部分198回收作为产品液氮,另一部分196输送进入塔111作为回流。另外,可将较富氮流以液体从塔111抽出,将*部分回收作为产品液氮,第二部分泵送进入塔110上部作为回流。

将较富氧流以液流199从第二塔111的下部引出,并输送通过伐100,再以物流101输送进入*部冷凝器6,通过与前述进行冷凝的较富氮的蒸气进行间接的热交换加以汽化。将所得较富氧的蒸气以物流102从*部冷凝器6引出,经热交换器5、3及1通路进行加热,并作为废物流178排出系统。

该多组分致冷剂流体含两种或多种组分,以提供在各温度下所需的致冷。致冷剂的*佳选择取决于具体系统的致冷负荷对温度的关系。要根据正常沸点、潜热、易燃性、毒性及臭氧消耗能力来选择适宜的组分。

一组用于实施本发明多组分致冷剂流体的优选实施方案,包括选自碳氟化合物、氟代烃和氟醚的至少两种组分。

另一组用于实施本发明多组分致冷剂流体的优选实施方案,包括选自碳氟化合物、氟代烃和氟醚的至少一种组分,和至少一种大气气体。

还有另一组用于实施本发明多组分致冷剂流体的优选实施方案,包括选自碳氟化合物、氟代烃和氟醚中的至少两种组分和至少两种大气气体。

还有另一组用于实施本发明多组分致冷剂流体的优选实施方案,包括至少一种氟醚和至少一种选自碳氟化合物、氟代烃、氟醚和大气气体的组分。液氮罐

在一组优选实施方案中,该多组分致冷剂流体是仅由碳氟化合物组成。在另一组优选实施方案中,该多组分致冷剂流体是只由碳氟化合物和氟代烃所组成。在另一组优选实施方案中,该多组分致冷剂流体是只由碳氟化合物和大气气体所组成。在另一组优选实施方案中,该多组分致冷剂流体是只由碳氟化合物和氟代烃及氟醚所组成。在另一组优选实施方案中,该多组分致冷剂流体是只由碳氟化合物和氟醚和大气气体所组成。

用于实施本发明的多组分致冷剂流体可含有其它组分,诸如氢氯碳氟化合物类及/或烃类。优选的是,该多组分致冷剂流体不含氢氯碳氟化合物类。在另一组本发明优选实施方案中,该多组分致冷剂流体不含烃类。*优选的是,该多组分致冷剂流体既不含氢氯碳氟化合物类,也不含烃类。*优选的是,该多组分致冷剂流体是无毒、难燃和不消耗臭氧的,和*优选的是该多组分致冷剂流体的各组分都是碳氟化合物、氟代烃、氟醚或大气气体。

本发明特别有利的是,用于有效地从环境温度达到低温温度。表1至表8列出了可用于实施本发明的多组分致冷剂流体混合物的优选实施例。表中所列浓度范围均为摩尔百分数。

本发明特别适用于提供宽温度范围,包括低温温度范围的致冷。在一组本发明优选实施方案中,致冷剂混合物两个或数个组分中的每一组分所具有的正常沸点都应与其致冷剂混合物中每一另外组分的正常沸点差异至少5°K,更优选至少10°K,*优选至少20°K。这样就可提高宽温度范围内包括低温温度范围内的致冷效率。在本发明特别优选实施方案中,该多组分致冷剂流体混合物中沸点*高组分的正常沸点比该多组分致冷剂流体混合物中沸点*低组分的正常沸点至少高50°K,优选高至少100°K,*优选高至少200°K。

尽管在多组分致冷剂流体流回路都是封闭单流回路,但利用其它流回路的装置也是理想的。例如,可能*好利用多独立流回路,各回路有其自己的致冷剂混合物和过程条件。这样的多回路更易于在不同温度范围内形成致冷作用,并可降低致冷剂系统的复杂性。此外,可能*好在一个或数个温度下的流动回路中包括相分离过程,以构成某些致冷剂流体的内循环。致冷剂流体的这种内循环可避免致冷剂液体不必要的冷却,并防止致冷剂液体的冻结。优选的是,由多组分致冷回路所产生的致冷将是操作该工艺及产生目的产品所需全部致冷。但是,其它源的致冷,诸如某一工艺流的气轮膨胀,也可以用于实施本发明。

构成用于实施本发明的多组分致冷剂流体的组分及其浓度,都要达到能形成可变负荷的多组分致冷剂流体程度,并优选在本发明方法的全温度范围内可保持这种可变负荷的特征。这样显然会提高效率,正因为如此在这样宽的温度范围内才能产生和利用致冷。这样定义的组分优选组合还有另外一个好处,即可利用它们来构成无毒、难燃及低或无臭氧消耗的流体混合物。这就具备了优于有毒、易燃和消耗臭氧的传统致冷剂的另外一些长处。

一种用于实施本发明的优选可变负荷的多组分致冷剂流体,即无毒、难燃和不消耗臭氧的多组分致冷剂流体,包括选自下述组合的两组份或更多组分C5F12、CHF2-O-C2HF4、C4HF9、C3H3F5、C2F5-O-CH2F、C3H2F6、CHF2-O-CHF2、C4F10、CF3-O-C2H2F3、C3HF7、CH2F-O-CF3、C2H2F4、CHF2-O-CF3、C3F8、C2HF5、CF3-O-CF3、C2F6、CHF3、CF4、O2、Ar、N2、Ne及He。

另一种用于实施本发明的优选可变负荷的多组分致冷剂流体,即无毒、难燃和不消耗臭氧并加热总能量低的多组分致冷剂流体,包括选自下述组合的两组份或更多组分CHCl2F3、CHF2-O-C2HF4、C3H3F5、C2F5-O-CH2F、C3H2F6、CHF2-O-CHF2、CHClF4、CF3-O-C2H2F3、C3HF7、CH2F-O-CF3、C2H2F4、CHF2-O-CF3、C2HF5、CF3-O-CF3、CHF3、CF4、O2、Ar、N2、Ne及He。

尽管参照某些优选实施方案对本发明已经进行了详述,但本领域的技术人员均会认识到,在本发明精神和权利要求的范围内,还存在本发明的一些其它实施方案。

权利要求

1.一种进料空气低温精馏生产氮气和液氮的方法,包括(A)、压缩一种多组分致冷剂流体,冷却该已被压缩的多组分致冷剂流体,膨胀该已被冷却及压缩的多组分致冷剂流体,并通过与所述进行冷却的已被压缩的多组分致冷剂流体间接热交换,来加热该膨胀的多组分致冷剂流体,并又与进料空气的间接热交换,来形成冷却后的进料空气;(B)、将冷却后的进料空气输送至低温精馏塔中,通过在低温精馏塔内的低温精馏将进料空气分离为富氮蒸气和富氧液体;(C)、回收该富氮蒸气的*部分作为产品氮气;(D)、冷凝第二部分的富氮蒸气,产生富氮液体;以及(E)、回收至少一些富氮液体作为产品液氮。

2.按照权利要求1的方法,其中第二部分的富氮蒸气的冷凝以生产富氮液体,是通过与富氧液体的间接热交换完成的。

3.按照权利要求1的方法,还包括在该多组分致冷剂流体膨胀之前冷却已被压缩的多组分致冷剂流体。

4.按照权利要求3的方法,其中进一步冷却该多组分致冷剂流体是通过与富氧液体的间接热交换完成的。

5.按照权利要求1的方法,其中该多组分致冷剂流体的每一组分是碳氟化合物、氟代烃和氟醚或大气气体。

6.按照权利要求1的方法,其中该富氧液体经部分汽化形成蒸气部分和液体部分,液体部分通过与富氮蒸气的第二部分的间接热交换而被汽化而产生富氮液体,和蒸气部分经压缩,然后被送入低温精馏塔。

7.一种通过进料空气低温精馏生产氮气和液氮的方法包括(A)、压缩一种多组分致冷剂流体,冷却该已被压缩的多组分致冷剂流体,膨胀该已被冷却及压缩的多组分致冷剂流体,并通过与所述进行冷却的已被压缩的多组分致冷剂流体间接热交换,来加热该膨胀的多组分致冷剂流体,并又与进料空气的间接热交换,来形成冷却后的进料空气;(B)、将冷却后的进料空气输送至*低温精馏塔中,通过*低温精馏塔内的低温精馏将该进料空气分离为富氮蒸气和富氧流体;(C)、将富氧流体送至第二低温精馏塔,在第二低温精馏塔内通过低温精馏,将将富氧流体分离为较富氮的流体和较富氧的流体;(D)、回收至少一些较富氮的流体作为产品液氮;并(E)、回收至少一些富氮蒸气和较富氮的流体中的至少一种作为产品氮气。

8.按照权利要求7的方法,其中富氮蒸气和较富氮的流体二者都被回收作为产品氮气。

9.按照权利要求7的方法,其中将富氧流体作为液体和蒸气输送进入第二低温精馏塔。

10.按照权利要求7的方法,其中该多组分致冷剂流体的每一组分是碳氟化合物、氟代烃和氟醚或大气气体。液氮罐
  • 本文链接地址:http://www.cnpetjy.com/827.html
  • 液氮罐相关资讯